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Abstract 

The thermal instability of a Non-Newtonian fluid in the presence of uniform magnetic field in a non-rotating medium is 
considered. For the case of stationary convection, fluid behaves like a Newtonian fluid. It is found that the magnetic field has 
both stabilizing and destabilizing effects. 
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1.  Introduction 

The thermal  instability of a fluid layer with maintained 
adverse temperature gradient by heating the underside,  play 
an important role in geophysics, interior of the earth, 
oceanography and atmospheric physics etc. a detailed account 
of the theoretical and  experimental study of the onset of  
Benard convection in Newtonian fluids. Under varying 
assumptions of hydrodynamics, has been given by 
Chandrasekhar [1]. The thermal instability of a Maxwell fluid 
in hydromagnetics   has been studied by Bhatia and Steiner 
[2]. They have found that the magnetic field stabilizes a 
viscoelastic fluid just as the Newtonian fluid. Effect of 
magnetic field on thermal instability of a Rotating Rivlin – 
Ericksen Viscoelastic fluid has been studied by pardeep kumar 
and  Hari Mohan [3]. The use of Boussinesq approximation 
has been made throughout, which states that the density may 
be treated as a constant in all the terms in the equations of 
motion except the external force term. Sekar. R et al.  [4]  
have studied Ferro convection in an anisotropic porous 
medium. Here the magnetic field  has  stabilizing effects on 
the stationary convection and introduce Oscillatory modes in 
the system.    Goel. A. K, Agrawal. S. C [5] have studied a 
Numerical study of hydromagnetic thermal    convection in a 
visco- elastic density fluid in a Porous Medium. Chen.H and 
Chen.C [6] have studied free convection flow  of Non –
Newtonian embedded in a porous medium. The effect of 
uniform magnetic fluid on thermal instability of Non –
Newtonian fluid in an anisotropic porous medium. I.G. 
Oldroyd [8] have studied  the non –Newtonian effects in 
steady motion of some idealized elastico –viscous liquid. 
Anoj Kumar, B.S. Bhadauria [9] have investicated  the   

 
thermal instability in a rotating anisotropic porous layer 
saturated by a viscoelastic fluid. 
 
 
2. Mathematical Formulation of the Problem and 

Peturbation Equations 

Consider an infinite, horizontal in compressible Non 
Newtonian fluid layer of thickness d, heated from below , so 
that , the temperature and density at the bottom surface z=0 

are T0, 0ρ  respectively and at the upper surface z d= are Td, 

dρ  and that a uniform adverse temperature gradient 

(| / |)dT dzβ =  is  maintained. Let ρ , p, T and ( , , )q u v w
r

 

denote respectively the  density pressure, temperature and 
velocity of the fluid , ( , )q x t

r
  and ( , )N x t  denote the 

velocity and number density of suspended particles 
respectively.                     
 
The equation of motion is  
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Equation of continuity is 
. 0v∇ =r                                                               (2.2)  

Heat conduction and Maxwell’s equation are  
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where ( , , )v u v w

r
, P, ρ, T, υ  and 'υ  denote the velocity, 

pressure, density, temperature, kinematic viscosity and 
kinematic viscoelasticity respectively and ( , , )r u v w

r
. 

 
The equation of state for the fluid is  

0 0[1 ( )]T Tρ ρ α= − −                                                   (2.6)            

      
where ρo, To are respectively the density and temperature of 
the fluid at the reference level z = 0 and α is the co-efficient of 
thermal expansion. 
 
The initial state is one in which the velocity, density, pressure 
and temperature at any point in the fluid are respectively, 
given by 

(0,0,0), ( ), ( ), ( )v z p p z T T zρ ρ= = = =r
                  (2.7)

                         
The change in density δρ, caused by the perturbation θ in 
temperature is given by  
 

0 0 0[1 ( )]T Tρ δρ ρ α θ ρ αρ θ+ = − + − = −    

                              
i.e., 0δρ αρ θ= −                                    (2.8) 

                                             
Then the linearised perturbation equations are  
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The perturbation quantities in the normal mode are taken as  

[w,θ, h,ξ]=[w(z),θ(z),K(z),χ(z)]exp (i kx x+ikyy+nt) 
where kx,ky are the wave numbers along x and y directions 
respectively. 

 
                      (2.14) 

       (2.15) 

      (2.16) 

 
Free – Free boundary conditions are 

W= D2W = 0, θ = 0 at z=0, z=1,  
 DX=0, K=0           (2.14)      

                                  
On a perfectly conducting boundary. We obtain the dispersion 
relation 

  + 

   (2.15) 

 
3.  The Stationary Convection 

 
When the instability sets in as stationary convection, the 
marginal state will be characterized by  σ = 0.  The dispersion 
relation is  

2
1 1

1
[(1 ) ]

x
R x Q

x

+ = + + 
 

             (3.1)    

a result given by Chandrasekaran [1]. 

Thus we have for the stationary convection, the visco-
elasticity parameter F vanishes with σ and non-newtonian 
fluid behaves like an ordinary Newtonian fluid.  To study the 
effects of rotation and magnetic field, we examine the nature 
of   and 1 1/dR dQ . 

 
Equation (3.1) yields 

         (3.2) 

 
It is also clear from (3.2) that for a stationary convection 

1 1/dR dQ  may be positive as well as negative.  Thus the 

magnetic field has both stabilizing and destabilizing effects on 
the system. 
 
The variation of R1 with Q1 for fixed value of x=3,4   is 
represented in Table 1 and the Fig. 1 shows the variation of R1 
with respect to Q1.  It clearly depicts both the stabilizing and 
destabilizing effects of the magnetic filled on the system.    
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Table. 1 

The variation of R1 with Q1 for fixed value of  x = 3 ,4 
Sl.No. Q1 R1 

X=3 X=4 

1. 1 22.67 32.50 

2. 4 26.67 36.25 

3. 7 30.67 40.00 

4. 10 34.67 43.75 

5. 13 38.67 47.50 

6. 16 42.67 51.25 

7. 19 46.67 55.00 
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Fig. 1. Variation of R1 with Q1 for fixed value of  x = 3 ,4 

 
4. Results and Discussion 
 
The thermal instability of Non – Newtonian fluid with 
uniform magnetic field in a non –rotating medium  has been 
analyzed using dispersion relation. The critical magnetic 
thermal Rayleigh number increases with different value of Q1. 
From the above discussion and analysis one can conclude that 
the magnetic field has both stabilizing and destabilizing 
effects   on the system. 
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